Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 656: 124074, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38565406

RESUMO

Tacrolimus (FK506) is an effective therapeutic for transplant rejection in clinical practice, primarily inhibiting rejection by suppressing the activation and proliferation of allogeneic T cells in the lymph nodes (LNs). However, conventional administration methods face challenges in directly delivering free FK506 to the LNs. In this study, we introduce a novel LN-targeted delivery system based on mesoporous silica nanoparticles (MSNs-FK506-MECA79). These particles were designed to selectively target high endothelial venules in LNs; this was achieved through surface modification with MECA79 antibodies. Their mean size and zeta potential were 201.18 ± 5.98 nm and - 16.12 ± 0.36 mV, respectively. Our findings showed that MSNs-FK506-MECA79 could accumulate in LNs and increase the local concentration of FK506 from 28.02 ± 7.71 ng/g to 123.81 ± 76.76 ng/g compared with the free FK506 treatment group. Subsequently, the therapeutic efficacy of MSNs-FK506-MECA79 was evaluated in a skin transplantation model. The treatment with MSNs-FK506-MECA79 could lead to a decrease in the infiltration of T cells in the grafts, a reduction in the grade of rejection, and a significant prolongation of survival. Consequently, this study presents a promising strategy for the active LN-targeted delivery of FK506 and improving the immunotherapeutic effects on transplant rejection.

2.
Heliyon ; 10(2): e24203, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312645

RESUMO

T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications. Functionalized nanoparticles offer a potential solution by targeting T cells within transplants or lymph nodes, thereby reducing the off-target effects and improving the long-term survival of the graft. In this review, we will provide an overview of recent advancements in T cell-targeted imaging molecular probes for diagnosing transplant rejection and the progress of T cell-regulating nanomedicines for treating transplant rejection. Additionally, we will discuss future directions and the challenges in clinical translation.

3.
Biosens Bioelectron ; 232: 115303, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060862

RESUMO

Allograft rejection has always been a major obstacle in organ transplantation. The current clinical diagnostic gold standard for allograft rejection is an invasive biopsy. However, biopsy has some limitations, such as sampling errors, risk of serious complications, and high cost. In this study, we have rationally developed an activatable fluorescent probe CYGB for imaging of granzyme B, which is a biomarker released by CD8+T cells attacking the graft. Moreover, the ability of CYGB to detect rejection early in mouse heart and skin transplantation models was evaluated. The probe CYGB consists of a caged hemicyanine-based fluorophore and a GzmB-specifically cleaved peptide substrate linked via a self-immolating spacer, p-aminobenzyl alcohol. Endogenous GzmB in CD8+ T cells specifically activated the near-infrared fluorescence (NIRF) signal of CYGB. In vivo imaging in mice skin and heart graft models, showed that CYGB preferentially accumulates in grafts, enabling early diagnosis of rejection. Moreover, CYGB enables non-invasive assessment of the level of immunosuppression in allogeneic mice treated with FK506. This study provides an alternative method for monitoring the status of allografts without biopsy.


Assuntos
Técnicas Biossensoriais , Linfócitos T CD8-Positivos , Camundongos , Animais , Granzimas , Corantes Fluorescentes , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/patologia
4.
Appl Environ Microbiol ; 88(22): e0116422, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326244

RESUMO

Organisms need sufficient intracellular iron to maintain biological processes. However, cells can be damaged by excessive iron-induced oxidation stress. Therefore, iron homeostasis must be strictly regulated. In general, bacteria have evolved complex mechanisms to maintain iron homeostasis. In this study, we showed that Pseudoalteromonas sp. R3 has four sets of iron uptake systems. Among these, the siderophore pyoverdine-dependent iron uptake system and the ferrous iron transporter Feo system are more important for iron uptake and prodiginine biosynthesis. Stringent starvation protein SspA positively controls iron uptake and iron-dependent prodiginine biosynthesis by regulating the expression of all iron uptake systems. In turn, the expression of SspA can be induced and repressed by extracellular iron deficiency and excess, respectively. Interestingly, extracytoplasmic function sigma factor PvdS also regulates iron uptake and prodiginine production and responds to extracellular iron levels, exhibiting a similar phenomenon as SspA. Notably, not only do SspA and PvdS function independently, but they can also compensate for each other, and their expression can be affected by the other. All of these findings demonstrate that SspA and PvdS coordinate iron homeostasis and prodiginine biosynthesis in strain R3. More importantly, our results also showed that SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 have similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that coordination between SspA and PvdS on iron homeostasis could be conserved in typical Gram-negative bacteria. Since master regulation of iron homeostasis is extremely important for cell survival, this cross talk between SspA and PvdS may be environmentally significant. IMPORTANCE Both deficiency and excess of intracellular iron can be harmful, and thus, the iron homeostasis needs to be tightly regulated in organisms. At present, the ferric uptake regulator (Fur) is the best-characterized regulator involved in bacterial iron homeostasis, while other regulators of iron homeostasis remain to be further explored. Here, we demonstrated that the stringent starvation protein SspA and the extracytoplasmic function sigma factor PvdS coordinate iron uptake and iron-dependent prodiginine biosynthesis in Pseudoalteromonas sp. R3. These two regulators work independently, but their functions can compensate for the other and their expression can be affected by the other. Moreover, their expression can be activated and repressed by extracellular iron deficiency and excess, respectively. Notably, SspA and PvdS homologs in Pseudomonas aeruginosa PAO1 exhibit similar functions in iron uptake to their counterparts in Pseudoalteromonas, suggesting that this novel fine-tuned mode of iron homeostasis could be conserved in typical Gram-negative bacteria.


Assuntos
Pseudoalteromonas , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Ferro/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo
5.
Curr Med Chem ; 28(42): 8800-8809, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34036905

RESUMO

BACKGROUND: Experimental evidence has shown that lncRNA MALAT1 is related to proliferation ability, invasion and migration ability, autophagy ability, and chemoresistance in gastric cancer. Moreover, MALAT1 is related to metastasis and patient prognosis in gastric cancer. This review aims to reveal the biological functions and specific mechanisms of MALAT1 in gastric cancer. METHODS: After a comprehensive and systematic search in PubMed, various molecular mechanisms of MALAT1 in mediating gastric carcinogenesis are collated and summarized. RESULTS: MALAT1-mediated gastric cancer is involved in a variety of molecular mechanisms. For example, MALAT1 can enhance the proliferation ability of gastric cancer cells by inhibiting the expressions of miR-122, miR-1297, miR-22-3p, miR-202, etc. MALAT1 enhances the metastasis and invasion of gastric cancer by participating in the EMT process, PI3-Akt and other pathways. MALAT1 enhances the proliferation and invasion of gastric cancer by inhibiting the function of the tumor suppressor gene PCDH10. MALAT1 can increase the autophagy ability of gastric cancer cells by inhibiting miR-183 and increasing the level of autophagy markers. MALAT1 enhances chemical resistance by inhibiting UPF1 and miR-30e levels. CONCLUSIONS: MALAT1 is tightly linked to gastric carcinogenesis through various molecular mechanisms. Moreover, MALAT1 is also closely associated with chemoresistance and poor prognosis in gastric cancer patients, suggesting the possibility of its use as a clinical therapeutic target and a promising independent risk factor for predicting patient prognosis.


Assuntos
MicroRNAs , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética
6.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483309

RESUMO

Prodiginines are a family of red-pigmented secondary metabolites with multiple biological activities. The biosynthesis of prodiginines is affected by various physiological and environmental factors. Thus, prodiginine biosynthesis regulation is highly complex and multifaceted. Although the regulatory mechanism for prodiginine biosynthesis has been extensively studied in Serratia and Streptomyces species, little is known about that in the marine betaproteobacterium Pseudoalteromonas In this study, we report that stringent starvation protein A (SspA), an RNA polymerase-associated regulatory protein, is required for the biosynthesis of prodiginine in Pseudoalteromonas sp. strain R3. The strain lacking sspA (ΔsspA) fails to produce prodiginine, which resulted from the downregulation of the prodiginine biosynthetic gene (pig) cluster. The effect of SspA on prodiginine biosynthesis is independent of histone-like nucleoid structuring protein (H-NS) and RpoS (σS). Further analysis demonstrates that the ΔsspA strain has a significant decrease in the transcription of the siderophore biosynthesis gene (pvd) cluster, leading to the inhibition of siderophore production and iron uptake. The ΔsspA strain regains the ability to synthesize prodiginine by cocultivation with siderophore producers or the addition of iron. Therefore, we conclude that SspA-regulated prodiginine biosynthesis is due to decreased siderophore levels and iron deficiency. We further show that the iron homeostasis master regulator Fur is also essential for pig transcription and prodiginine biosynthesis. Overall, our results suggest that SspA indirectly regulates the biosynthesis of prodiginine, which is mediated by the siderophore-dependent iron uptake pathway.IMPORTANCE The red-pigmented prodiginines are attracting increasing interest due to their broad biological activities. As with many secondary metabolites, the biosynthesis of prodiginines is regulated by both environmental and physiological factors. At present, studies on the regulation of prodiginine biosynthesis are mainly restricted to Serratia and Streptomyces species. This work focused on the regulatory mechanism of prodiginine biosynthesis in Pseudoalteromonas sp. R3. We found that stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis via affecting the siderophore-dependent iron uptake pathway. The connections among SspA, iron homeostasis, and prodiginine biosynthesis were investigated. These findings uncover a novel regulatory mechanism for prodigiosin biosynthesis.


Assuntos
Adesinas Bacterianas/genética , Prodigiosina/análogos & derivados , Pseudoalteromonas/genética , Sideróforos/metabolismo , Adesinas Bacterianas/metabolismo , Ferro/metabolismo , Prodigiosina/biossíntese , Pseudoalteromonas/metabolismo
7.
Biochem Biophys Res Commun ; 534: 885-890, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33143873

RESUMO

Bacteria commonly exhibit social activities through acyl-homoserine lactones (AHLs)-based quorum sensing (QS) systems to form their unique social network. The sigma factor RpoS is an important regulator that controls QS system in different bacteria. However, the upstream of RpoS involving regulation on QS system remains unclear. In Escherichia coli RpoS is regulated by stringent starvation protein A (SspA), which is dependent of histone-like nucleoid structuring protein (H-NS). To date, the connection between SspA and QS system is essentially unknown. Here, we characterized a typical LuxI/LuxR-type QS system in marine bacterium Pseudoalteromonas sp. T1lg65 which can produce four types of AHLs. The luxI encoding AHLs synthase and luxR encoding AHLs-responsive receptor are co-transcribed, providing advantages in rapidly amplifying QS signaling. Notably, SspA positively regulated luxI/luxR transcription by activating RpoS expression, which is mediated by H-NS. Interestingly, LuxR in turn positively regulated SspA expression. Therefore, SspA and QS system constitute a mutual positive regulation loop in T1lg65. In view of the crucial roles of SspA and QS system in environmental adaption, we believe that the improvement of bacterial tolerance to marine environments could be related to rapidly tuning SspA-involved QS programming.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudoalteromonas/fisiologia , Percepção de Quorum , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Acil-Butirolactonas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
8.
Biochem Biophys Res Commun ; 533(4): 988-994, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33010891

RESUMO

Biofilm formation enhances the survival and persistence of microorganisms in response to environmental stresses. It has been revealed that stringent starvation protein A (SspA) can function as an important regulator dealing with environmental stresses for bacterial survival. However, the connection between SspA and biofilm formation is essentially unclear yet. In this study, we presented evidence showing SspA positively controls biofilm formation by up-regulating exopolysaccharides (EPS) production in marine bacterium Pseudoalteromonas sp. R3. Both qPCR and lacZ reporter system congruously revealed that SspA positively controls the expression of EPS biosynthesis gene cluster. Unlike generally accepted thought that SspA regulates bacterial physiology by inhibiting the expression of histone-like nucleotide structuring protein (H-NS) gene, the function of SspA on EPS production and biofilm formation in Pseudoalteromonas sp. R3 is H-NS-independent. Instead, SspA positively regulates the expression of sigma factor AlgU-encoding gene, thus affecting EPS biosynthesis and biofilm formation. In view of the important role of SspA in biofilm formation, we believe that the improvement of tolerance to marine environmental stresses could be related to tuning of SspA-involved biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/biossíntese , Pseudoalteromonas/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Microscopia Eletrônica de Varredura , Família Multigênica , Mutação , Pseudoalteromonas/genética , Pseudoalteromonas/ultraestrutura , Fator sigma/genética , Fator sigma/metabolismo , Regulação para Cima
9.
Res Microbiol ; 170(6-7): 243-255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31325485

RESUMO

Bacteria usually produce, release and detect quorum sensing (QS)-based signal molecules, and successively orchestrate gene expression in respond to environmental changes. Pseudoalteromonas are typical marine bacteria, but knowledge on their QS systems is extremely fragmentary. In this study, genome sequencing of Pseudoalteromonas sp. R3 was performed. Accordingly, a QS working model including three sets of hierarchically organized QS systems was proposed in strain R3. Among them, the typical LuxI/R-type QS system using acyl-homoserine lactones (AHLs) as signal molecules was characterized. Sequence similarity analysis indicated luxI encoding AHLs synthase is novel. The luxR encoding AHLs receptor is directly adjacent to luxI downstream. Notably, mutagenesis demonstrated LuxI and LuxR affect each other at transcriptional level, and both control the AHLs formation. Interestingly, it was found that LuxI/R-type QS system positively involves resistance to streptomycin. Thin-layer chromatography analysis showed strain R3 can produce 3-OH-C6-HSL and C8-HSL, which was supported by heterologous expression of LuxI in Escherichia coli. Sequence alignment analysis indicated that the N-terminal region of LuxI is more conservative than the C-terminal region, revealing the importance of N-terminal region in AHLs synthesis. The obtained findings enrich our knowledge on LuxI/R-type QS system in Pseudoalteromonas and its regulation on adaptation to marine environments.


Assuntos
Acil-Butirolactonas/metabolismo , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Pseudoalteromonas/genética , Percepção de Quorum/genética , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/genética , Genoma Bacteriano/genética , Pseudoalteromonas/efeitos dos fármacos , Pseudoalteromonas/fisiologia , Alinhamento de Sequência , Transdução de Sinais/genética , Estreptomicina/farmacologia , Sequenciamento Completo do Genoma
10.
Int J Mol Sci ; 19(11)2018 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453700

RESUMO

A bstract: Quorum sensing (QS) enables single-celled bacteria to communicate with chemical signals in order to synchronize group-level bacterial behavior. Pseudoalteromonas are marine bacteria found in versatile environments, of which QS regulation for their habitat adaptation is extremely fragmentary. To distinguish genes required for QS regulation in Pseudoalteromonas, comparative genomics was deployed to define the pan-genomics for twelve isolates and previously-sequenced genomes, of which acyl-homoserine lactone (AHL)-based QS traits were characterized. Additionally, transposon mutagenesis was used to identify the essential QS regulatory genes in the selected Pseudoalteromonas isolate. A remarkable feature showed that AHL-based colorization intensity of biosensors induced by Pseudoalteromonas most likely correlates with QS regulators genetic heterogeneity within the genus. This is supported by the relative expression levels of two of the main QS regulatory genes (luxO and rpoN) analyzed in representative Pseudoalteromonas isolates. Notably, comprehensive QS regulatory schema and the working model proposed in Pseudoalteromonas seem to phylogenetically include the network architectures derived from Escherichia coli, Pseudomonas, and Vibrio. Several associated genes were mapped by transposon mutagenesis. Among them, a right origin-binding protein-encoding gene (robp) was functionally identified as a positive QS regulatory gene. This gene lies on a genomic instable region and exists in the aforementioned bioinformatically recruited QS regulatory schema. The obtained data emphasize that the distinctly- and hierarchically-organized mechanisms probably target QS association in Pseudoalteromonas dynamic genomes, thus leading to bacterial ability to accommodate their adaption fitness and survival advantages.


Assuntos
Pseudoalteromonas/genética , Percepção de Quorum/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Contagem de Colônia Microbiana , Genômica , Mutação/genética , Fenótipo , Pseudoalteromonas/crescimento & desenvolvimento , Pseudoalteromonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...